MATH 127 - Midterm Exam I - Review

Fall 2021 - Sections 12.1-12.7, 14.1-14.7
Midterm Exam 1: Wednesday 9/29, 5:50-7:50 pm
The following is a list of important concepts will be tested on Midterm Exam 1. This is not a complete list of the material that you should know for the course, but the review provides a summary of concepts and the problems are a good indication of what will be emphasized on the free response portion of the exam. A thorough understanding of all of the following concepts will help you perform well on the exam. Some places to find problems on these topics are the following: in the book, in the slides, in the homework, on quizzes, and Achieve.

Vector Geometry and Quadric Surfaces: (Sections 12.1-12.6)

A vector \vec{r} can be described using component notation $\langle a, b, c\rangle$ or standard basis notation $a \vec{i}+b \vec{j}+c \vec{k}$. A vector has a magnitude, its length, $|\vec{r}|=\sqrt{a^{2}+b^{2}+c^{2}}$.
Suppose that $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$; let c be a scalar.
(i) Scalar Multiplication: A scalar multiplied with a vector resulting in a vector. Scalar multiplication changes the magnitude of a vector, not it's direction. $c \vec{a}=\left\langle c a_{1}, c a_{2}, c a_{3}\right\rangle$
(ii) Vector Addition: Two vectors are added to create a vector. Visually, vectors are added through the Parallelogram or Triangle Law. $\vec{a}+\vec{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle$
(iii) Dot Product: Two vectors are multiplied to create a scalar. Work is an example of the dot product. If θ is the angle between \vec{a} and \vec{b}, then

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

(iv) Cross Product: Two vectors are multiplied to create a vector. $a \overrightarrow{\times} b$ is orthogonal to both \vec{a} and \vec{b}. Torque is an example of the cross product. The determinant of a 2×2 matrix is $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$, this observation is used in computing the cross product

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\langle | \begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\left|,-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|,\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|\right\rangle
$$

Important Identities:
(i) $\vec{v} \cdot \vec{v}=|\vec{v}|^{2}$
(iii) Parallelogram formed by \vec{u}, \vec{v} has area $|\vec{u} \times \vec{v}|$.
(ii) $\vec{v} \perp \vec{u}$ if and only if $\vec{v} \cdot \vec{u}=0$.
(iv) $\vec{u} \times \vec{v}=-\vec{v} \times \vec{u}$.

Lines

Given a point $P\left(x_{0}, y_{0}, z_{0}\right)$ on the line and a directional vector $\vec{v}=\langle a, b, c\rangle$:

$$
\vec{r}(t)=\frac{\text { Vector Equation }}{\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle}
$$

Two lines are either parallel (parallel direction vectors), intersecting, or skew.

Planes

Given a point $P\left(x_{0}, y_{0}, z_{0}\right)$ on the plane and a normal vector $\vec{n}=\langle a, b, c\rangle$:

$$
\left.a\left(x-x_{0}\right) \frac{\text { Scalar Equation }}{+b\left(y-y_{0}\right)+c(z}-z_{0}\right)=0
$$

Two planes are parallel (parallel normal vectors) or intersect along a line.

Quadric Surfaces:

Cylindrical and Spherical Coordinates:

Cylindrical Coordinates:

To convert from cylindrical coordinates to Cartesian coordinates:

$$
x=r \cos (\theta) \quad y=r \sin (\theta) \quad z=z
$$

To convert from Cartesian coordinates to cylindrical coordinates:

$$
r^{2}=x^{2}+y^{2} \quad \tan (\theta)=\frac{y}{x} \quad z=z
$$

Spherical Coordinates:

Conversion from spherical to Cartesian:
$x=\rho \sin (\phi) \cos (\theta)$
$y=\rho \sin (\phi) \sin (\theta)$

Conversion from Cartesian to spherical:
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$
$\tan (\theta)=\frac{y}{x}$
$\cos (\phi)=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \quad \underset{\mathrm{x}}{\mathrm{x}}$

Exercises:

1. Find the angle between the side of a square pyramid and a diagonal on the base.

We are searching for the angle formed by $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

$$
\overrightarrow{A B}=\left\langle\frac{-b}{2}, \frac{b}{2}, h\right\rangle \quad \overrightarrow{A C}=\langle-b, b, 0\rangle
$$

Using the definition of the dot product:

$$
\begin{gathered}
\vec{v} \cdot \vec{u}=|\vec{v}||\vec{u}| \cos (\theta) \\
\theta=\arccos \left(\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}\right)=\arccos \left(\frac{b^{2}}{\sqrt{0.5 b^{2}+h^{2}} \sqrt{2 b^{2}}}\right)=\arccos \left(\frac{b}{\sqrt{b^{2}+2 h^{2}}}\right) .
\end{gathered}
$$

2. If $|\vec{u}|=2,|\vec{v}|=3$, and the angle between the vectors is 30°, then find $(\vec{u}+\vec{v}) \cdot(\vec{u}-\vec{v})$.

Recall that $\vec{x} \cdot \vec{x}=|\vec{x}|^{2}$ and $\vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x}$.
Using distribution of the dot product:

$$
(\vec{u}+\vec{v}) \cdot(\vec{u}-\vec{v})=\vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{u}-\vec{u} \cdot \vec{v}-\vec{v} \cdot \vec{v}=|\vec{u}|^{2}-|\vec{v}|^{2}=2^{2}-3^{2}=-5
$$

3. Find two unit vectors orthogonal to both $\vec{a}=\langle 3,1,1\rangle$ and $\vec{b}=\langle-1,2,1\rangle$.

The two unity vectors are $\frac{\vec{n}}{|\vec{n}|}$ and $\frac{-\vec{n}}{|\vec{n}|}$ where $\vec{n}=\vec{a} \times \vec{b}$.

$$
\vec{n}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & 1 & 1 \\
-1 & 2 & 1
\end{array}\right|=\langle-1,-4,7\rangle
$$

Since $\vec{n}=\sqrt{66}$, the vectors are $\left\langle\frac{-1}{\sqrt{66}}, \frac{-4}{\sqrt{66}}, \frac{7}{\sqrt{66}}\right\rangle$ and $\left\langle\frac{1}{\sqrt{66}}, \frac{4}{\sqrt{66}}, \frac{-7}{\sqrt{66}}\right\rangle$.
4. Identify and sketch the graph of each surface:
(A) $y^{2}+z^{2}=1+x^{2}$
(C) $4 x^{2}+4 y^{2}-8 y+z^{2}=0$

Hyperboloid of 1-Sheet, centered at $(1,0,0)$ opening along the x-axis.
(B) $-x^{2}+y^{2}-4 z^{2}=4$

Hyperboloid of 2-Sheets, with vertices at $(0, \pm 2,0)$ opening along the y-axis.
(D) $x=y^{2}+z^{2}-2 y-4 z+5$
$x^{2}+(y-1)^{2}+\frac{z^{2}}{2^{2}}=1$ Ellipsoid, centered at $(0,1,0)$.
$x=(y-1)^{2}+(z-2)^{2}$ Elliptic Paraboloid, centered at $(0,1,2)$ opening positively on x-axis.
5. Match the following equations with the graphs:
(A) $x^{2}+4 y^{2}+9 z^{2}=1$
(C) $x^{2}-y^{2}+z^{2}=1$
(E) $y=2 x^{2}+z^{2}$
(G) $x^{2}+2 z^{2}=1$
(B) $9 x^{2}+y^{2}+z^{2}=1$
(D) $-x^{2}+y^{2}-z^{2}=1$
(F) $y^{2}=x^{2}+2 z^{2}$
(H) $y=x^{2}-z^{2}$

I

II

(C) $x^{2}-y^{2}+z^{2}=1$

V

(H) $y=x^{2}-z^{2}$
(E) $y=2 x^{2}+z^{2}$
(B) $9 x^{2}+y^{2}+z^{2}=1$
III

(F) $y^{2}=x^{2}+2 z^{2}$
(D) $-x^{2}+y^{2}-z^{2}=1$

IV

VII

(A) $x^{2}+4 y^{2}+9 z^{2}=1$
(G) $x^{2}+2 z^{2}=1$
6. Describe the three dimensional object defined by each equation in spherical coordinates.
(A) $\rho=R$
(C) $\phi=\pi / 2$
(E) $\phi=C$ for $C \neq 0, \frac{\pi}{2}, \pi$
(B) $\phi=0$
(D) $\phi=\pi$

(A) The equation $\rho=R$ defines a sphere of radius R.
(B) Points with $\phi=0$ are on the positive z-axis.
(C) Points with $\phi=\pi / 2$ are on the $x y$-plane (i.e., $z=0$).
(D) Points with $\phi=\pi$ are on the negative z-axis.
(E) For other values of C, the equation $\phi=C$ defines a nappe of a cone.

Multivariable Functions: (Sections 14.1-14.5)

2 -variable functions $z=f(x, y)$ have domain in \mathbb{R}^{2} and range in \mathbb{R}. The graph of f is a surface S in \mathbb{R}^{3}, a 2-dimensional object in space. The graph of S can be approximated with curves in two ways:
(i) Horizontal and Vertical Traces:

A curve obtained by intersecting the graph with a plane parallel to the major planes.

- The trace of $x=a$ results in $z=f(a, y)$.
- The trace of $y=b$ results in $z=f(x, b)$.
- The trace of $z=c$ results in $c=f(x, y)$.
(ii) Level Curves and Contour Maps:

A level curve is a curve $f(x, y)=c$ in \mathbb{R}^{2}, where c is a constant. A contour map is a collection of level curves of various constants.

Limits in 2-Variables:

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(a, b)} f(x, y)=L \text { if and only if } \lim _{t \rightarrow 0}^{t \rightarrow 0} f(x(t), y(t))=L \text { along any curve } \\
& \vec{r}(t)=\langle x(t), y(t)\rangle \text { where } \vec{r}(0)=\langle a, b\rangle .
\end{aligned}
$$

- Show a limit does not exist by exhibiting two paths with different limits.
- Show a limit exists by using substitution (continuous values only), using the Squeeze Theorem, or using Polar Coordinates.

$\underline{\text { Partial Derivatives and Tangent Planes: }}$

The rate of change in the x-direction is the partial derivative $f_{x}=\frac{\partial f}{\partial x}$. The rate of change in the y-direction is the partial derivative $f_{y}=\frac{\partial f}{\partial y}$. Note that $f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}$.

To compute the partial derivative with respect to x treat the y-variable as a constant and apply the ordinary rules for differentiation. Compute the partial derivative with respect to y in an analogous way. Partial differentiation is not implicit differentiation.

The tangent plane to the surface S, defined by $z=f(x, y)$, at $P(a, b)$ contains the tangent line of any curve on S which passes through P.

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

f is differentiable at P if it is locally linear at P.
If $f_{x}(a, b)$ and $f_{y}(a, b)$ are continuous, then f is differentiable at (a, b).

If f is differentiable at (a, b), then the tangent plane to f at (a, b) approximates values of f for points near (a, b).

If $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is differentiable $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then the total differential $d f$ approximates changes in f over small changes in the domain away from $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

$$
d f=f_{x_{1}}\left(a_{1}, \ldots, a_{n}\right) \Delta x_{1}+f_{x_{2}}\left(a_{1}, \ldots, a_{n}\right) \Delta x_{2}+\ldots+f_{x_{n}}\left(a_{1}, \ldots, a_{n}\right) \Delta x_{n}
$$

If f is a differentiable function, then f has a directional derivative in the direction of any unit vector $\vec{u}=\langle a, b\rangle$ and

$$
D_{\vec{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b=\nabla f(x, y) \cdot \vec{u}
$$

Basic geometric properties of the gradient vector:
(i) $\nabla f(a, b)$ points in the direction of maximum rate of increase of f at (a, b). The maximum rate of increase is $|\nabla f(a, b)|$.
(ii) $-\nabla f(a, b)$ points in the direction of maximum rate of decrease of f at (a, b). The maximum rate of decrease is $-|\nabla f(a, b)|$.
(iii) $\nabla f(a, b)$ is orthogonal to the level curve through (a, b).
(iv) $\nabla f(a, b, c)$ is orthogonal to the level surface through (a, b, c).
(v) The equation of the tangent plane to the level surface $F(x, y, z)=k$ at (a, b, c) has a normal vector $\nabla f(a, b, c)$.

Exercises:

1. Evaluate the following limits:
(A) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}+3 x y+4 y^{2}}{3 x^{2}+5 y^{2}}$
Path $y=0: \lim _{(x, 0) \rightarrow(0,0)} \frac{2 x^{2}}{3 x^{2}}=\frac{2}{3}$
Path $x=0: \lim _{(0, y) \rightarrow(0,0)} \frac{4 y^{2}}{5 y^{2}}=\frac{4}{5}$

The limit does not exist.
(B) $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2} y}{x^{2}+y^{2}}$

Solution 1:

Using polar coordinates:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2} y}{x^{2}+y^{2}}=\lim _{r \rightarrow 0^{+}} \frac{4 r^{2} \cos ^{2}(\theta) r \sin (\theta)}{r^{2}}=\lim _{r \rightarrow 0^{+}} 4 r \cos ^{2}(\theta) \sin (\theta)=0
$$

Solutions 2:
$0 \leq \frac{4 x^{2} y}{x^{2}+y^{2}} \leq 4 y$ since $0 \leq \frac{1}{x^{2}+y^{2}} \leq \frac{1}{x^{2}}$
Since $\lim _{(x, y) \rightarrow(0,0)} 4 y=0$, by the Squeeze Theorem $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2} y}{x^{2}+y^{2}}=0$.
(C) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$

Using polar coordinates:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0^{+}} \frac{r^{3}\left(\cos ^{3}(\theta)+\sin ^{3}(\theta)\right)}{r^{2}}=\lim _{r \rightarrow 0^{+}} r\left(\cos ^{3}(\theta)+\sin ^{3}(\theta)\right)=0
$$

(D) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}+y^{2}}{x^{2}+2 y^{2}}$

Path $y=0: \lim _{(x, 0) \rightarrow(0,0)} \frac{2 x^{2}}{x^{2}}=2$
Path $x=0: \lim _{(0, y) \rightarrow(0,0)} \frac{y^{2}}{2 y^{2}}=\frac{1}{2}$
The limit does not exist.
(E) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}$

Path $y=0: \lim _{(x, 0) \rightarrow(0,0)} \frac{0}{x^{2}}=0$
Path $x=y^{4}: \lim _{\left(y^{4}, y\right) \rightarrow(0,0)} \frac{y^{8}}{y^{8}+y^{8}}=\frac{1}{2}$
The limit does not exist.
(F) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+x y+y^{2}}$

Path $x=0: \quad \lim _{(0, y) \rightarrow(0,0)} \frac{0}{y^{2}}=0$
Path $y=m x$:

$$
\lim _{(x, m x) \rightarrow(0,0)} \frac{m^{2} x^{2}}{x^{2}+m x^{2}+m^{2} x^{2}}=\frac{m^{2}}{1+m+m^{2}}
$$

The limit does not exist.
2. Match the surface and contour map:

3. Compute $\frac{\partial^{2} h}{\partial y \partial x}$ for $h(x, y)=\ln \left(x^{3}+y^{3}\right)$

$$
\frac{\partial^{2} h}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x} \ln \left(x^{3}+y^{3}\right)\right)=\frac{\partial}{\partial y}\left(\frac{3 x^{2}}{x^{3}+y^{3}}\right)=\frac{-9 x^{2} y^{2}}{\left(x^{3}+y^{3}\right)^{2}}
$$

4. A one-meter long bar is heated unevenly, with the temperature in ${ }^{\circ} \mathrm{C}$ at a distance x from one end at time t given by

$$
H(x, t)=100 e^{-0.1 t} \sin (\pi x) \quad 0 \leq x \leq 1
$$

(A) Calculate $H_{x}(0.2, t)$ and $H_{x}(0.8, t)$. What is the practical interpretation (in terms of temperature) of these two partial derivatives? Explain why each one has the sign that it does.
(B) Calculate $H_{t}(x, t)$. What is its sign? What is its interpretation in terms of temperature?

$$
H_{x}(x, t)=100 \pi e^{-0.1 t} \cos (\pi x) \quad H_{t}(x, t)=-10 e^{-0.1 t} \sin (\pi x)
$$

(A) $H_{x}(0.2, t) \approx 254 e^{-0.1 t}$ and $H_{x}(0.8, t) \approx-254 e^{-0.1 t}$.
0.2 meters from the bottom of the bar at time t, the instantaneous change in temperature as we move up the bar decreases by approximately $254 e^{-0.1 t}$ degrees per meter moved.
0.8 meters from the bottom of the bar at time t, the instantaneous change in temperature as we move up the bar increases by approximately $254 e^{-0.1 t}$ degrees per meter moved.

A possible scenario is the center of the bar was heated and the ends at $x=0$ and $x=1$ are cold.
(B) $H_{t}(x, t)$ is negative. As time passes, the bar cools.
5. Is there a function f which has the following partial derivatives? If so, what is it? Are there any others?

$$
f_{x}(x, y)=4 x^{3} y^{2}-3 y^{4} \quad f_{y}(x, y)=2 x^{4} y-12 x y^{3}
$$

$$
f_{x y}(x, y)=8 x^{3} y-12 y^{3} \quad f_{y x}(x, y)=8 x^{3} y-12 y^{3}
$$

Since f_{x} and f_{y} are continuous everywhere, Clairaut's Theorem indicates that $f_{x y}=f_{y x}$ everywhere; such a function f might exist.

The function could be $f(x, y)=x^{4} y^{2}-3 x y^{4}+C$ where C is a constant.
6. If $|a|$ is much greater than $|b|,|c|,|d|$, to which of a, b, c, d is the value of the determinant most sensitive? Justify your answer.

$$
f(a, b, c, d)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

$$
f(a, b, c, d)=a d-b c \quad \nabla f(a, b, c, d)=\langle d,-c,-b, a\rangle
$$

Using the Total Differential, $d f=d \Delta a-c \Delta b-b \Delta c+a \Delta d$.
Since $|a|$ is much greater than $|b|,|c|,|d|$, the error in calculating the determinant, $d f$, will be most sensitive to errors in measuring d.
7. Four positive numbers, each less than 50 , are rounded to the second decimal place and than multiplied together. Use differentials to estimate the maximum possible errors in the computed product that might result from the rounding.

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4} \quad \nabla P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\langle x_{2} x_{3} x_{4}, x_{1} x_{3} x_{4}, x_{1} x_{2} x_{4}, x_{1} x_{2} x_{3}\right\rangle
$$

Using the Total Differential, $d P=x_{2} x_{3} x_{4} \Delta x_{1}+x_{1} x_{3} x_{4} \Delta x_{2}+x_{1} x_{2} x_{4} \Delta x_{3}+x_{1} x_{2} x_{3} \Delta x_{4}$.
Since $x_{i}<50$ and $\left|\Delta x_{i}\right|<0.01$, the error in calculating the product is smaller than

$$
|d P|<(50)^{3}(0.01)+(50)^{3}(0.01)+(50)^{3}(0.01)+(50)^{3}(0.01)=5000
$$

8. Verify that $f(x, y)=\sqrt{y+\cos ^{2}(x)}$ is differentiable at $(0,0)$ and then show that

$$
\sqrt{y+\cos ^{2}(x)} \approx 1+0.5 y
$$

$$
f(0,0)=1 \quad f_{x}(x, y)=\frac{-\cos (x) \sin (x)}{\sqrt{y+\cos ^{2}(x)}} \quad f_{y}(x, y)=\frac{1}{2 \sqrt{y+\cos ^{2}(x)}}
$$

Since $f_{x}(0,0)=0$ and $f_{y}(0,0)=\frac{1}{2}$ and both f_{x} and f_{y} are elementary, they are continuous at $(0,0)$. Since f_{x} and f_{y} are continuous at $(0,0), f$ is differentiable at $(0,0)$.

Since f is differentiable at $(0,0), f$ can be approximated by its' tangent plane at $(0,0)$ for (x, y) near $(0,0)$.

$$
f(x, y) \approx L_{(0,0)}(x, y)=1+0(x-0)+0.5(y-0)=1+0.5 y
$$

9. Use a linear approximation to estimate $\frac{9.02}{\sqrt{2.01 \cdot 1.99}}$

Let $f(x, y, z)=\frac{x}{\sqrt{y z}}$.

$$
f_{x}(x, y, z)=\frac{1}{\sqrt{y z}} \quad f_{y}(x, y, z)=\frac{-x z}{2(y z)^{3 / 2}} \quad f_{z}(x, y, z)=\frac{-x y}{2(y z)^{3 / 2}}
$$

Since f_{x}, f_{y}, and f_{z} are continuous at $(9,2,2), f$ is differentiable at $(9,2,2)$.

$$
\begin{gathered}
f(9,2,2)=\frac{9}{2} \quad f_{x}(9,2,2)=\frac{1}{2} \quad f_{y}(9,2,2)=\frac{-9}{8} \quad f_{z}(9,2,2)=\frac{-9}{8} \\
L_{(9,2,2)}(x, y, z)=\frac{9}{2}+\frac{1}{2}(x-9)-\frac{9}{8}(y-2)-\frac{9}{8}(z-2)
\end{gathered}
$$

Since f is differentiable at $(9,2,2)$,

$$
\frac{9.02}{\sqrt{2.01 \cdot 1.99}} \approx L_{(9,2,2)}(9.02,2.01,1.99)=\frac{9}{2}+\frac{1}{2}(0.02)-\frac{9}{8}(0.01)-\frac{9}{8}(-0.01)=4.51
$$

10. Calculate the directional derivative of $f(x, y, z)=3 e^{x} \cos (y z)$ in the direction $\langle 2,1,-2\rangle$.

$$
f_{x}(x, y, z)=3 e^{x} \cos (y z) \quad f_{y}(x, y, z)=-3 z e^{x} \sin (y z) \quad f_{z}(x, y, z)=-3 y e^{x} \sin (y z)
$$

The direction is $\vec{u}=\left\langle\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right\rangle$. Since f is differentiable everywhere,

$$
D_{\vec{u}}(x, y, z)=\nabla f(x, y, z) \cdot \vec{u}=e^{x}(2 \cos (y z)-z \sin (y z)+2 y \sin (y z))
$$

11. A bug located at $(3,9,4)$ begins traveling in a straight line towards $(5,7,3)$. The temperature is

$$
T(x, y, z)=x e^{y-z}
$$

where x, y, z are in meters and T is in ${ }^{\circ} C$.
(A) At what rate is the bug's temperature changing?

$$
T_{x}(x, y, z)=e^{y-z} \quad T_{y}(x, y, z)=x e^{y-z} \quad T_{z}(x, y, z)=-x e^{y-z}
$$

The bug travels in the direction of $\vec{u}=\left\langle\frac{2}{3}, \frac{-2}{3}, \frac{-1}{3}\right\rangle$. Since T is differentiable,

$$
D_{\vec{u}} f(3,9,4)=\nabla T(3,9,4) \cdot \vec{u}=\left\langle e^{5}, 3 e^{5},-3 e^{5}\right\rangle \cdot\left\langle\frac{2}{3}, \frac{-2}{3}, \frac{-1}{3}\right\rangle=\frac{-e^{5}}{3} \frac{{ }^{\circ} C}{m}
$$

(B) At $(5,7,3)$, in what direction is the temperature increasing the fastest? What is this maximum rate of change?

The temperature is increasing fastest in the direction $\frac{\nabla T(5,7,3)}{|\nabla T(5,7,3)|}$ at a rate of $|\nabla T(5,7,3)|$.

$$
\begin{gathered}
\nabla T(5,7,3)=\left\langle e^{4}, 5 e^{4},-5 e^{4}\right\rangle \quad|\nabla T(5,7,3)|=\sqrt{51} e^{4} \\
\frac{\nabla T(5,7,3)}{|\nabla T(5,7,3)|}=\left\langle\frac{1}{\sqrt{51}}, \frac{5}{\sqrt{51}}, \frac{-5}{\sqrt{51}}\right\rangle
\end{gathered}
$$

(C) At $(5,7,3)$, in what direction is the temperature decreasing the fastest? What is this maximum rate of change?

The temperature is decreasing fastest in the direction $\frac{-\nabla T(5,7,3)}{|\nabla T(5,7,3)|}$ at a rate of $-|\nabla T(5,7,3)|$.

$$
-|\nabla T(5,7,3)|=-\sqrt{51} e^{4} \quad \frac{-\nabla T(5,7,3)}{|\nabla T(5,7,3)|}=\left\langle\frac{-1}{\sqrt{51}}, \frac{-5}{\sqrt{51}}, \frac{5}{\sqrt{51}}\right\rangle
$$

Chain Rule and Optimization: (Sections 14.6, 14.7. 14.8)

Chain Rule: Partial derivatives through composition of multiple variable functions.
Suppose that $z=f(x, y), x=g(s, t)$, and $y=$ $h(s, t)$ are differential functions. Then z can be viewed as a function of s and t which is differentiable where
$\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$ and $\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$

In general, if $f\left(x_{1}, \ldots, x_{n}\right)$ is a function of n-variables which can be shown to depend upon m-independent variables $\left\{t_{1}, \ldots, t_{m}\right\}$ through k-composition connections, then

- f has m-partial derivatives,
- Each partial derivative is a sum with n terms,
- Each term of the sum is a product of $(k+1)$ terms.

Implicit Differentiation: If $z=z(x, y)$ is defined implicitly by $F(x, y, z)=0$, by the Chain Rule

$$
\frac{\partial z}{\partial x}=\frac{-F_{x}(x, y, z)}{F_{z}(x, y, z)} \quad \text { and } \quad \frac{\partial z}{\partial y}=\frac{-F_{y}(x, y, z)}{F_{z}(x, y, z)}
$$

Critical points of f are the points in the domain where $\nabla f=\overrightarrow{0}$. Fermat's Theorem states that the critical points of f are the only potential local extrema of f.

Optimization - Local Extrema: Critical points of f are the points in the domain where $\nabla f=\overrightarrow{0}$. Fermat's Theorem states that the critical points of f are the only potential local extrema of f.

$$
\text { Discriminant: } D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}
$$

Second Derivative Test: If (a, b) is a critical point of f and the second-order partial derivatives of f are continuous near (a, b), then
(I) If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then (a, b) is a local minimum of f.
(II) If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then (a, b) is a local maximum of f.
(III) If $D(a, b)<0$, then (a, b) is a saddle point.

Lagrange Multipliers: If f and g are differentiable functions and f has a local extrema on the constraint curve $g(x, y)=k$ at (a, b), where $\nabla g(a, b) \neq \overrightarrow{0}$, then there exists a scalar λ such that $\nabla f(a, b)=\lambda \nabla g(a, b)$. 1

Optimization - Absolute Extrema: The Extreme Value Theorem guarantees that functions which are continuous on a closed and bounded set \mathcal{D} attain an absolute maximum and minimum value in \mathcal{D}.
Absolute extrema of a continuous function on a closed and bounded set are located using the Closed Interval Method.

[^0](I) Find all critical points in \mathcal{D} and their values.
(II) Find the values of the absolute extrema of f on the boundary of \mathcal{D} using either
(a) substitution and the closed interval method from MATH 125,
or (b) Lagrange Multipliers.
(III) The largest values from (I) and $(I I)$ are the absolute maximum values and the smallest values are the absolute minimum values.

Exercises:

1. Find $\frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}, \frac{\partial z}{\partial w}$ when $(u, v, w)=(2,1,0)$.

$$
z=x^{2}+x y^{3} \quad x=u v^{2}+w^{3} \quad y=u+v e^{w}
$$

When $(u, v, w)=(2,1,0),(x, y)=(2,3)$. Using the Chain Rule,

$$
\begin{gathered}
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}=\left(2 x+y^{3}\right)\left(v^{2}\right)+\left(3 y^{2}\right)(1)=58 \\
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}=\left(2 x+y^{3}\right)(2 u v)+\left(3 y^{2}\right)\left(e^{w}\right)=151 \\
\frac{\partial z}{\partial w}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial w}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial w}=\left(2 x+y^{3}\right)\left(3 w^{2}\right)+\left(3 y^{2}\right)\left(v e^{w}\right)=54
\end{gathered}
$$

2. Consider the implicit surface:

$$
x y z=\cos (x+y+z)
$$

(A) Calculate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(B) Find the equation of tangent plane at $\left(\frac{\pi}{2}, 0,0\right)$.
(A) Let $F(x, y, z)=x y z-\cos (x+y+z)$. z is implicitly defined by $F(x, y, z)=0$.

Using the Chain Rule,

$$
\frac{\partial z}{\partial x}=\frac{-F_{x}}{F_{z}}=\frac{-(y z+\sin (x+y+z))}{x y+\sin (x+y+z)} \quad \frac{\partial z}{\partial y}=\frac{-F_{y}}{F_{z}}=\frac{-(x z+\sin (x+y+z))}{x y+\sin (x+y+z)}
$$

(B) Method 1: (Using the partials)

Use the formula: $z=c+\frac{\partial z}{\partial x}(a, b, c)(x-a)+\frac{\partial z}{\partial x}(a, b, c)(y-b)$.
That is, $z=\frac{\partial z}{\partial x}\left(\frac{\pi}{2}, 0,0\right)\left(x-\frac{\pi}{2}\right)+\frac{\partial z}{\partial x}\left(\frac{\pi}{2}, 0,0\right)(y): z=-\left(x-\frac{\pi}{2}\right)-y$

Method 2: (Using the gradient)
$\nabla F(x, y, z)=\langle y z+\sin (x+y+z), x z+\sin (x+y+z), x y+\sin (x+y+z)\rangle$
$\nabla F\left(\frac{\pi}{2}, 0,0\right)=\langle 1,1,1\rangle \quad$ An equation of the plane is: $\langle 1,1,1\rangle \cdot\left\langle x-\frac{\pi}{2}, y, z\right\rangle=0$
So the equation is $x-\frac{\pi}{2}+y+z=0$
3. For the following functions, find the critical points and classify them using the second derivative test:
(A) $f(x, y)=2 x y-x^{2}-2 y^{2}+3 x+4$
(B) $g(x, y)=e^{x^{2}+y^{2}-4 x}$
(A) The critical points of f satisfy the equation $\nabla f(x, y)=\overrightarrow{0}$.

$$
\begin{array}{cc}
\nabla f(x, y)=\langle 2 y-2 x+3,2 x-4 y\rangle=\overrightarrow{0} \quad & \Rightarrow \quad(x, y)=\left(3, \frac{3}{2}\right) \\
D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}(x, y)^{2}=(-2)(-4)-(2)^{2}=4
\end{array}
$$

By the Second Derivative Test, $\left(3, \frac{3}{2}\right)$ is a local maximum of f since

$$
D\left(3, \frac{3}{2}\right)=4 \quad f_{x x}\left(3, \frac{3}{2}\right)=-2
$$

(B) The critical points of g satisfy the equation $\nabla g(x, y)=\overrightarrow{0}$.

$$
\begin{gathered}
\nabla g(x, y)=\left\langle(2 x-4) e^{x^{2}+y^{2}-4 x}, 2 y e^{x^{2}+y^{2}-4 x}\right\rangle=\overrightarrow{0} \quad \Rightarrow \quad(x, y)=(2,0) \\
D(x, y)=\left(\left(4 x^{2}-16 x+18\right) e^{x^{2}+y^{2}-4 x}\right)\left(\left(2+4 y^{2}\right) e^{x^{2}+y^{2}-4 x}\right)-\left(2 y(2 x-4) e^{x^{2}+y^{2}-4 x}\right)^{2}
\end{gathered}
$$

By the Second Derivative Test, $(2,0)$ is a local minimum of g since

$$
D(2,0)=4 e^{-8} \quad g_{x x}(2,0)=2 e^{-4}
$$

[^0]: ${ }^{1}$ The Lagrange Multipliers are not included in Exam 1.

