
MATH 127 - Midterm Exam I - Review
Fall 2021 - Sections 12.1-12.7, 14.1-14.7

Midterm Exam 1: Wednesday 9/29, 5:50-7:50 pm

The following is a list of important concepts will be tested on Midterm Exam 1. This is not a complete list
of the material that you should know for the course, but the review provides a summary of concepts and
the problems are a good indication of what will be emphasized on the free response portion of the exam.
A thorough understanding of all of the following concepts will help you perform well on the exam. Some
places to find problems on these topics are the following: in the book, in the slides, in the homework, on
quizzes, and Achieve.

Vector Geometry and Quadric Surfaces: (Sections 12.1 - 12.6)

A vector ~r can be described using component notation 〈a, b, c〉 or standard basis notation a~i+ b~j + c~k.

A vector has a magnitude, its length, |~r | =
√
a2 + b2 + c2.

Suppose that ~a = 〈a1, a2, a3〉 and ~b = 〈b1, b2, b3〉; let c be a scalar.

(i) Scalar Multiplication: A scalar multiplied with a vector resulting in a vector. Scalar multiplica-
tion changes the magnitude of a vector, not it’s direction. c~a = 〈ca1, ca2, ca3〉

(ii) Vector Addition: Two vectors are added to create a vector. Visually, vectors are added through

the Parallelogram or Triangle Law. ~a+~b = 〈a1 + b1, a2 + b2, a3 + b3〉

(iii) Dot Product: Two vectors are multiplied to create a scalar. Work is an example of the dot

product. If θ is the angle between ~a and ~b, then

~a ·~b = |~a|
∣∣∣~b∣∣∣ cos(θ) = a1b1 + a2b2 + a3b3

(iv) Cross Product: Two vectors are multiplied to create a vector. ~a× b is orthogonal to both ~a and~b.

Torque is an example of the cross product. The determinant of a 2× 2 matrix is

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc,

this observation is used in computing the cross product

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =

〈∣∣∣∣ a2 a3
b2 b3

∣∣∣∣ ,− ∣∣∣∣ a1 a3
b1 b3

∣∣∣∣ , ∣∣∣∣ a1 a2
b1 b2

∣∣∣∣〉

Important Identities:

(i) ~v · ~v = |~v|2

(ii) ~v ⊥ ~u if and only if ~v · ~u = 0.

(iii) Parallelogram formed by ~u, ~v has area |~u× ~v|.

(iv) ~u× ~v = −~v × ~u.



Lines

Given a point P (x0, y0, z0) on the line and a
directional vector ~v = 〈a, b, c〉:

Vector Equation
~r(t) = 〈x0, y0, z0〉+ t 〈a, b, c〉

Two lines are either parallel (parallel direction
vectors), intersecting, or skew.

Planes

Given a point P (x0, y0, z0) on the plane and a
normal vector ~n = 〈a, b, c〉:

Scalar Equation
a(x− x0) + b(y − y0) + c(z − z0) = 0

Two planes are parallel (parallel normal vectors)
or intersect along a line.

Quadric Surfaces:
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Cylindrical and Spherical Coordinates:

Cylindrical Coordinates:

y

z

x

(x, y, z) = (r, θ, z)

r

z

θ

To convert from cylindrical coordinates to
Cartesian coordinates:

x = r cos(θ) y = r sin(θ) z = z

To convert from Cartesian coordinates to
cylindrical coordinates:

r2 = x2 + y2 tan(θ) =
y

x
z = z

Spherical Coordinates:

Conversion from spherical to Cartesian:

x = ρ sin(φ) cos(θ) y = ρ sin(φ) sin(θ) z = ρ cos(φ)

Conversion from Cartesian to spherical:

ρ =
√
x2 + y2 + z2 tan(θ) =

y

x
cos(φ) =

z√
x2 + y2 + z2

y

z

x

(x, y, z) = (ρ, θ, φ)

P

r

z
ρ

θO

φ
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Exercises:
1. Find the angle between the side of a square pyramid and a diagonal on the base.

x

y

z

θ

B(0, 0, h)

A
(
b
2
,− b

2
, 0
) B

(
− b

2
, b
2
, 0
)

We are searching for the angle formed by
−→
AB and

−→
AC.

−→
AB =

〈
−b
2
,
b

2
, h

〉
−→
AC = 〈−b, b, 0〉

Using the definition of the dot product:

~v · ~u = |~v| |~u| cos(θ)

θ = arccos

 −→AB · −→AC∣∣∣−→AB∣∣∣ ∣∣∣−→AC∣∣∣
 = arccos

(
b2

√
0.5b2 + h2

√
2b2

)
= arccos

(
b√

b2 + 2h2

)
.

2. If |~u| = 2, |~v| = 3, and the angle between the vectors is 30◦, then find (~u+ ~v) · (~u− ~v).

Recall that ~x · ~x = |~x|2 and ~x · ~y = ~y · ~x.

Using distribution of the dot product:

(~u+ ~v) · (~u− ~v) = ~u · ~u+ ~v · ~u− ~u · ~v − ~v · ~v = |~u|2 − |~v|2 = 22 − 32 = −5

3. Find two unit vectors orthogonal to both ~a = 〈3, 1, 1〉 and ~b = 〈−1, 2, 1〉.

The two unity vectors are
~n

|~n|
and

−~n
|~n|

where ~n = ~a×~b.

~n =

∣∣∣∣∣∣
~i ~j ~k
3 1 1
−1 2 1

∣∣∣∣∣∣ = 〈−1,−4, 7〉
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Since ~n =
√

66, the vectors are

〈
−1√

66
,
−4√

66
,

7√
66

〉
and

〈
1√
66
,

4√
66
,
−7√

66

〉
.

4. Identify and sketch the graph of each surface:

(A) y2 + z2 = 1 + x2

Hyperboloid of 1-Sheet, centered at
(1, 0, 0) opening along the x-axis.

(B) −x2 + y2 − 4z2 = 4

Hyperboloid of 2-Sheets, with vertices
at (0,±2, 0) opening along the y-axis.

(C) 4x2 + 4y2 − 8y + z2 = 0

x2+(y−1)2+
z2

22
= 1 Ellipsoid, centered

at (0, 1, 0).

(D) x = y2 + z2 − 2y − 4z + 5

x = (y − 1)2 + (z − 2)2 Elliptic
Paraboloid, centered at (0, 1, 2) opening
positively on x-axis.

5



5. Match the following equations with the graphs:

(A) x2 + 4y2 + 9z2 = 1

(B) 9x2 + y2 + z2 = 1

(C) x2 − y2 + z2 = 1

(D) −x2 + y2− z2 = 1

(E) y = 2x2 + z2

(F) y2 = x2 + 2z2

(G) x2 + 2z2 = 1

(H) y = x2 − z2

6. Describe the three dimensional object defined by each equation in spherical coordinates.

(A) ρ = R

(B) φ = 0

(C) φ = π/2

(D) φ = π

(E) φ = C for C 6= 0,
π

2
, π

(A) The equation ρ = R defines a sphere of radius R.

(B) Points with φ = 0 are on the positive z-axis.

(C) Points with φ = π/2 are on the xy-plane (i.e., z = 0).

(D) Points with φ = π are on the negative z-axis.

(E) For other values of C, the equation φ = C defines a nappe of a cone.
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Multivariable Functions: (Sections 14.1 - 14.5)

2-variable functions z = f(x, y) have domain in R2 and range inR. The graph of f is a surface S in R3,
a 2-dimensional object in space. The graph of S can be approximated with curves in two ways:

(i) Horizontal and Vertical Traces:
A curve obtained by intersecting the graph with a plane parallel to the major planes.

– The trace of x = a results in z = f(a, y).

– The trace of y = b results in z = f(x, b).

– The trace of z = c results in c = f(x, y).

(ii) Level Curves and Contour Maps:

A level curve is a curve f(x, y) = c in R2, where
c is a constant. A contour map is a collection of
level curves of various constants.

Limits in 2-Variables:

lim
(x,y)→(a,b)

f(x, y) = L if and only if lim
t→0

f(x(t), y(t)) = L along any curve

~r(t) = 〈x(t), y(t)〉 where ~r(0) = 〈a, b〉.

• Show a limit does not exist by exhibiting two
paths with different limits.

• Show a limit exists by using substitution (con-
tinuous values only), using the Squeeze Theo-
rem, or using Polar Coordinates.

x

y

a

b

0

Partial Derivatives and Tangent Planes:

The rate of change in the x-direction is the partial derivative fx =
∂f

∂x
. The rate of change in the

y-direction is the partial derivative fy =
∂f

∂y
. Note that fxy =

∂2f

∂y∂x
.
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To compute the partial derivative with respect to x treat the y-variable as a constant and apply the
ordinary rules for differentiation. Compute the partial derivative with respect to y in an analogous way.

Partial differentiation is not implicit differentiation.

The tangent plane to the surface S, defined by
z = f(x, y), at P (a, b) contains the tangent line of
any curve on S which passes through P .

z = fx(a, b)(x− a) + fy(a, b)(y − b) + f(a, b)

f is differentiable at P if it is locally linear at P .

If fx(a, b) and fy(a, b) are continuous, then f is dif-
ferentiable at (a, b).

If f is differentiable at (a, b), then the tangent plane to f at (a, b) approximates values of f for points
near (a, b).

If f(x1, x2, . . . , xn) is differentiable (a1, a2, . . . , an), then the total differential df approximates changes in
f over small changes in the domain away from (a1, a2, . . . , an).

df = fx1(a1, . . . , an)∆x1 + fx2(a1, . . . , an)∆x2 + . . .+ fxn(a1, . . . , an)∆xn

If f is a differentiable function, then f has a directional derivative in the direction of any unit vector
~u = 〈a, b〉 and

D~uf(x, y) = fx(x, y)a+ fy(x, y)b = ∇f(x, y) · ~u

Basic geometric properties of the gradient vector:

(i) ∇f(a, b) points in the direction of maximum rate of increase of f at (a, b). The maximum rate of
increase is

∣∣∇f(a, b)
∣∣.

(ii) −∇f(a, b) points in the direction of maximum rate of decrease of f at (a, b). The maximum rate
of decrease is −

∣∣∇f(a, b)
∣∣.

(iii) ∇f(a, b) is orthogonal to the level curve through (a, b).

(iv) ∇f(a, b, c) is orthogonal to the level surface through (a, b, c).

(v) The equation of the tangent plane to the level surface F (x, y, z) = k at (a, b, c) has a normal vector
∇f(a, b, c).
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Exercises:

1. Evaluate the following limits:

(A) lim
(x,y)→(0,0)

2x2 + 3xy + 4y2

3x2 + 5y2

Path y = 0: lim
(x,0)→(0,0)

2x2

3x2
=

2

3
Path x = 0: lim

(0,y)→(0,0)

4y2

5y2
=

4

5

The limit does not exist.

(B) lim
(x,y)→(0,0)

4x2y

x2 + y2

Solution 1:
Using polar coordinates:

lim
(x,y)→(0,0)

4x2y

x2 + y2
= lim

r→0+

4r2 cos2(θ)r sin(θ)

r2
= lim

r→0+
4r cos2(θ) sin(θ) = 0

Solutions 2:

0 ≤ 4x2y

x2 + y2
≤ 4y since 0 ≤ 1

x2 + y2
≤ 1

x2

Since lim
(x,y)→(0,0)

4y = 0, by the Squeeze Theorem lim
(x,y)→(0,0)

4x2y

x2 + y2
= 0.

(C) lim
(x,y)→(0,0)

x3 + y3

x2 + y2

Using polar coordinates:

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= lim

r→0+

r3
(
cos3(θ) + sin3(θ)

)
r2

= lim
r→0+

r
(
cos3(θ) + sin3(θ)

)
= 0

(D) lim
(x,y)→(0,0)

2x2 + y2

x2 + 2y2
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Path y = 0: lim
(x,0)→(0,0)

2x2

x2
= 2 Path x = 0: lim

(0,y)→(0,0)

y2

2y2
=

1

2

The limit does not exist.

(E) lim
(x,y)→(0,0)

xy4

x2 + y8

Path y = 0: lim
(x,0)→(0,0)

0

x2
= 0 Path x = y4: lim

(y4,y)→(0,0)

y8

y8 + y8
=

1

2

The limit does not exist.

(F) lim
(x,y)→(0,0)

xy

x2 + xy + y2

Path x = 0: lim
(0,y)→(0,0)

0

y2
= 0

Path y = mx:

lim
(x,mx)→(0,0)

m2x2

x2 +mx2 +m2x2
=

m2

1 +m+m2

The limit does not exist.

2. Match the surface and contour map:

3. Compute
∂2h

∂y ∂x
for h(x, y) = ln(x3 + y3)
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∂2h

∂y ∂x
=

∂

∂y

(
∂

∂x
ln(x3 + y3)

)
=

∂

∂y

(
3x2

x3 + y3

)
=
−9x2y2

(x3 + y3)2

4. A one-meter long bar is heated unevenly, with the temperature in ◦C at a distance x from one end
at time t given by

H(x, t) = 100e−0.1t sin(πx) 0 ≤ x ≤ 1

(A) Calculate Hx(0.2, t) and Hx(0.8, t). What is the practical interpretation (in terms of temper-
ature) of these two partial derivatives? Explain why each one has the sign that it does.

(B) Calculate Ht(x, t). What is its sign? What is its interpretation in terms of temperature?

Hx(x, t) = 100πe−0.1t cos(πx) Ht(x, t) = −10e−0.1t sin(πx)

(A) Hx(0.2, t) ≈ 254e−0.1t and Hx(0.8, t) ≈ −254e−0.1t.

0.2 meters from the bottom of the bar at time t, the instantaneous change in temperature as
we move up the bar decreases by approximately 254e−0.1t degrees per meter moved.

0.8 meters from the bottom of the bar at time t, the instantaneous change in temperature as
we move up the bar increases by approximately 254e−0.1t degrees per meter moved.

A possible scenario is the center of the bar was heated and the ends at x = 0 and x = 1 are
cold.

(B) Ht(x, t) is negative. As time passes, the bar cools.

5. Is there a function f which has the following partial derivatives? If so, what is it? Are there any
others?

fx(x, y) = 4x3y2 − 3y4 fy(x, y) = 2x4y − 12xy3

fxy(x, y) = 8x3y − 12y3 fyx(x, y) = 8x3y − 12y3

Since fx and fy are continuous everywhere, Clairaut’s Theorem indicates that fxy = fyx every-
where; such a function f might exist.

The function could be f(x, y) = x4y2 − 3xy4 + C where C is a constant.

6. If |a| is much greater than |b|, |c|, |d|, to which of a, b, c, d is the value of the determinant most
sensitive? Justify your answer.

f(a, b, c, d) =

∣∣∣∣ a b
c d

∣∣∣∣
11



f(a, b, c, d) = ad− bc ∇f(a, b, c, d) = 〈d,−c,−b, a〉

Using the Total Differential, df = d∆a− c∆b− b∆c+ a∆d.

Since |a| is much greater than |b|, |c|, |d|, the error in calculating the determinant, df , will be
most sensitive to errors in measuring d.

7. Four positive numbers, each less than 50, are rounded to the second decimal place and than multi-
plied together. Use differentials to estimate the maximum possible errors in the computed product
that might result from the rounding.

P (x1, x2, x3, x4) = x1x2x3x4 ∇P (x1, x2, x3, x4) = 〈x2x3x4, x1x3x4, x1x2x4, x1x2x3〉

Using the Total Differential, dP = x2x3x4∆x1 + x1x3x4∆x2 + x1x2x4∆x3 + x1x2x3∆x4.

Since xi < 50 and |∆xi| < 0.01, the error in calculating the product is smaller than

|dP | < (50)3(0.01) + (50)3(0.01) + (50)3(0.01) + (50)3(0.01) = 5000

8. Verify that f(x, y) =
√
y + cos2(x) is differentiable at (0, 0) and then show that√

y + cos2(x) ≈ 1 + 0.5y

f(0, 0) = 1 fx(x, y) =
− cos(x) sin(x)√
y + cos2(x)

fy(x, y) =
1

2
√
y + cos2(x)

Since fx(0, 0) = 0 and fy(0, 0) =
1

2
and both fx and fy are elementary, they are continuous at

(0, 0). Since fx and fy are continuous at (0, 0), f is differentiable at (0, 0).

Since f is differentiable at (0, 0), f can be approximated by its’ tangent plane at (0, 0) for (x, y)
near (0, 0).

f(x, y) ≈ L(0,0)(x, y) = 1 + 0(x− 0) + 0.5(y − 0) = 1 + 0.5y

9. Use a linear approximation to estimate
9.02√

2.01 · 1.99

Let f(x, y, z) =
x
√
yz

.

fx(x, y, z) =
1
√
yz

fy(x, y, z) =
−xz

2(yz)3/2
fz(x, y, z) =

−xy
2(yz)3/2
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Since fx, fy, and fz are continuous at (9, 2, 2), f is differentiable at (9, 2, 2).

f(9, 2, 2) =
9

2
fx(9, 2, 2) =

1

2
fy(9, 2, 2) =

−9

8
fz(9, 2, 2) =

−9

8

L(9,2,2)(x, y, z) =
9

2
+

1

2
(x− 9)− 9

8
(y − 2)− 9

8
(z − 2)

Since f is differentiable at (9, 2, 2),

9.02√
2.01 · 1.99

≈ L(9,2,2)(9.02, 2.01, 1.99) =
9

2
+

1

2
(0.02)− 9

8
(0.01)− 9

8
(−0.01) = 4.51

10. Calculate the directional derivative of f(x, y, z) = 3ex cos(yz) in the direction 〈2, 1,−2〉.

fx(x, y, z) = 3ex cos(yz) fy(x, y, z) = −3zex sin(yz) fz(x, y, z) = −3yex sin(yz)

The direction is ~u =

〈
2

3
,
1

3
,
−2

3

〉
. Since f is differentiable everywhere,

D~u(x, y, z) = ∇f(x, y, z) · ~u = ex
(
2 cos(yz)− z sin(yz) + 2y sin(yz)

)

11. A bug located at (3, 9, 4) begins traveling in a straight line towards (5, 7, 3). The temperature is

T (x, y, z) = xey−z

where x, y, z are in meters and T is in ◦C.

(A) At what rate is the bug’s temperature changing?

Tx(x, y, z) = ey−z Ty(x, y, z) = xey−z Tz(x, y, z) = −xey−z

The bug travels in the direction of ~u =

〈
2

3
,
−2

3
,
−1

3

〉
. Since T is differentiable,

D~uf(3, 9, 4) = ∇T (3, 9, 4) · ~u =
〈
e5, 3e5,−3e5

〉
·
〈

2

3
,
−2

3
,
−1

3

〉
=
−e5

3

◦C

m

(B) At (5, 7, 3), in what direction is the temperature increasing the fastest? What is this maximum
rate of change?
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The temperature is increasing fastest in the direction
∇T (5, 7, 3)

|∇T (5, 7, 3)|
at a rate of |∇T (5, 7, 3)|.

∇T (5, 7, 3) =
〈
e4, 5e4,−5e4

〉
|∇T (5, 7, 3)| =

√
51e4

∇T (5, 7, 3)

|∇T (5, 7, 3)|
=

〈
1√
51
,

5√
51
,
−5√

51

〉

(C) At (5, 7, 3), in what direction is the temperature decreasing the fastest? What is this maximum
rate of change?

The temperature is decreasing fastest in the direction
−∇T (5, 7, 3)

|∇T (5, 7, 3)|
at a rate of

− |∇T (5, 7, 3)|.

− |∇T (5, 7, 3)| = −
√

51e4
−∇T (5, 7, 3)

|∇T (5, 7, 3)|
=

〈
−1√

51
,
−5√

51
,

5√
51

〉
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Chain Rule and Optimization: (Sections 14.6, 14.7, 14.8)

Chain Rule: Partial derivatives through composition of multiple variable functions.

Suppose that z = f(x, y), x = g(s, t), and y =
h(s, t) are differential functions. Then z can be
viewed as a function of s and t which is differen-
tiable where

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
and

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

s t s t

x(s, t) y(s, t)

z(x, y)

In general, if f
(
x1, . . . , xn) is a function of n-variables which can be shown to depend upon m-independent

variables {t1, . . . , tm} through k-composition connections, then

• f has m-partial derivatives,

• Each partial derivative is a sum with n terms,

• Each term of the sum is a product of (k + 1) terms.

Implicit Differentiation: If z = z(x, y) is defined implicitly by F (x, y, z) = 0, by the Chain Rule

∂z

∂x
=
−Fx(x, y, z)

Fz(x, y, z)
and

∂z

∂y
=
−Fy(x, y, z)

Fz(x, y, z)

Critical points of f are the points in the domain where ∇f = ~0. Fermat’s Theorem states that the
critical points of f are the only potential local extrema of f .

Optimization - Local Extrema: Critical points of f are the points in the domain where ∇f = ~0.
Fermat’s Theorem states that the critical points of f are the only potential local extrema of f .

Discriminant: D(a, b) =

∣∣∣∣ fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

∣∣∣∣ = fxx(a, b)fyy(a, b)− fxy(a, b)2

Second Derivative Test: If (a, b) is a critical point of f and the second-order partial derivatives of f are
continuous near (a, b), then

(I) If D(a, b) > 0 and fxx(a, b) > 0, then (a, b) is a local minimum of f .

(II) If D(a, b) > 0 and fxx(a, b) < 0, then (a, b) is a local maximum of f .

(III) If D(a, b) < 0, then (a, b) is a saddle point.

Lagrange Multipliers: If f and g are differentiable functions and f has a local extrema on the constraint
curve g(x, y) = k at (a, b), where∇g(a, b) 6= ~0, then there exists a scalar λ such that∇f(a, b) = λ∇g(a, b).
1

Optimization - Absolute Extrema: The Extreme Value Theorem guarantees that functions which
are continuous on a closed and bounded set D attain an absolute maximum and minimum value in D.

Absolute extrema of a continuous function on a closed and bounded set are located using the Closed
Interval Method.

1The Lagrange Multipliers are not included in Exam 1.
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(I) Find all critical points in D and their values.

(II) Find the values of the absolute extrema of f on the boundary of D using either

(a) substitution and the closed interval method from MATH 125,

or (b) Lagrange Multipliers.

(III) The largest values from (I) and (II) are the absolute maximum values and the smallest values are
the absolute minimum values.

Exercises:

1. Find
∂z

∂u
,
∂z

∂v
,
∂z

∂w
when (u, v, w) = (2, 1, 0).

z = x2 + xy3 x = uv2 + w3 y = u+ vew

When (u, v, w) = (2, 1, 0), (x, y) = (2, 3). Using the Chain Rule,

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
=
(
2x+ y3

)
(v2) + (3y2)(1) = 58

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
=
(
2x+ y3

)
(2uv) + (3y2)(ew) = 151

∂z

∂w
=
∂z

∂x

∂x

∂w
+
∂z

∂y

∂y

∂w
=
(
2x+ y3

)
(3w2) + (3y2)(vew) = 54

2. Consider the implicit surface:
xyz = cos(x+ y + z)

(A) Calculate
∂z

∂x
and

∂z

∂y
.

(B) Find the equation of tangent plane at
(
π
2
, 0, 0

)
.

(A) Let F (x, y, z) = xyz − cos(x+ y + z). z is implicitly defined by F (x, y, z) = 0.
Using the Chain Rule,

∂z

∂x
=
−Fx
Fz

=
− (yz + sin(x+ y + z))

xy + sin(x+ y + z)

∂z

∂y
=
−Fy
Fz

=
− (xz + sin(x+ y + z))

xy + sin(x+ y + z)

(B) Method 1: (Using the partials)

Use the formula: z = c+
∂z

∂x
(a, b, c)(x− a) +

∂z

∂x
(a, b, c)(y − b).

That is, z =
∂z

∂x

(
π
2
, 0, 0

) (
x− π

2

)
+
∂z

∂x

(
π
2
, 0, 0

)
(y): z = −

(
x− π

2

)
− y
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Method 2: (Using the gradient )

∇F (x, y, z) = 〈yz + sin(x+ y + z), xz + sin(x+ y + z), xy + sin(x+ y + z)〉
∇F

(
π
2
, 0, 0

)
= 〈1, 1, 1〉 An equation of the plane is: 〈1, 1, 1〉·

〈
x− π

2
, y, z

〉
= 0

So the equation is x− π

2
+ y + z = 0

3. For the following functions, find the critical points and classify them using the second derivative
test:

(A) f(x, y) = 2xy − x2 − 2y2 + 3x+ 4 (B) g(x, y) = ex
2+y2−4x

(A) The critical points of f satisfy the equation ∇f(x, y) = ~0.

∇f(x, y) = 〈2y − 2x+ 3, 2x− 4y〉 = ~0 ⇒ (x, y) =

(
3,

3

2

)
D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = (−2)(−4)− (2)2 = 4

By the Second Derivative Test,

(
3,

3

2

)
is a local maximum of f since

D

(
3,

3

2

)
= 4 fxx

(
3,

3

2

)
= −2

(B) The critical points of g satisfy the equation ∇g(x, y) = ~0.

∇g(x, y) =
〈

(2x− 4)ex
2+y2−4x, 2yex

2+y2−4x
〉

= ~0 ⇒ (x, y) = (2, 0)

D(x, y) =
(

(4x2 − 16x+ 18)ex
2+y2−4x

)(
(2 + 4y2)ex

2+y2−4x
)
−
(

2y(2x− 4)ex
2+y2−4x

)2
By the Second Derivative Test, (2, 0) is a local minimum of g since

D(2, 0) = 4e−8 gxx(2, 0) = 2e−4
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